Academic Council Meeting No. and Date : 8 / September 04, 2023Agenda Number : 2Resolution Number : 34,35/2.4 & 2.25

Vidya Prasarak Mandal's B. N. Bandodkar College of Science (Autonomous), Thane

Syllabus for

Programme : Bachelor of Science

Specific Programme : PHYSICS

[F.Y.B.Sc. Physics]

Level 4.5 Choice based grading system

Revised under NEP From academic year 2023 - 2024 This page is intentionally left blank

Preamble

The systematic and planned curricula from these courses shall motivate and encourage learners to understand basic concepts of Physics. It will help the student to

- □ To develop analytical abilities towards real world problems
- □ To familiarize with current and recent scientific and technological developments
- □ To enrich knowledge through problem-solving, hands-on activities, study visits
- □ To develop good observation ability
- \Box To understand links of Physics to other disciplines.
- □ To develop scientific temperament.
- □ To obtain solutions to scientific questions by use of qualitative and quantitative reasoning and by experimental investigation.

The syllabus is aimed to achieve certain objectives. The syllabus spanning three years, covers from fundamental concepts in Physics and give glimpses of the scenario at the frontier. The students will be ready for the higher educational opportunities and jobs available in different fields of Physics and related environment like:

- ➤ Master's degree in Physics
- ➤ Master's degree in Computer applications MCA.
- PG Course in Radiology
- Software Development (Programming C++)
- > Careers that require Scientific or Technical expertise.
- > Careers in Civil and administrative Services.

BOS Chairperson: Dr. Sangita Meshram.

Eligibility:

Passed 12th standard (HSC) of Maharashtra State Board / CBSE / ICSE board.

Discipline/Subject: Physics

Degree Programme: B.Sc.

Duration: 3 year (Include semester I & II)

Level: 4.5

Qualification Title: UG certificate

Credits Requirement: Minimum 40 or Maximum 44 Credits

Mode of Conduct: Offline Laboratory Practical's Offline lectures / online lectures.

Program Specific Outcome:

By the end of the program the students will be able to:

Classify, propose, and analyze physical problems. Interpret the results through a wide range of experiments, data analysis, theories and techniques, concepts, and general principles of Physics.

VPM's B.N.Bandodkar College of Science (Autonomous), Thane F.Y.B.Sc. (Physics) Structure of Programme

		Structure of Programme Semester 1: Major		
Course Code	Course Title		No. of lectures In hrs	Credits
23BUPH1T1	Classical Physic	cs (Major 1)	30	2
23BUPH1T2	Modern Physics	s (Major 2)	30	2
23BUPH1P1	Physics Practic	als	60	2
23BU1SEC7	SEC - Physics I	Measuring skill	45	2
		Total	165	8
		Semester 1: Minor	······································	
Course Code	Course Title		No. of lectures In hrs	Credits
23BUPH1T3	Classical Physic	cs (Minor 1)	30	2
23BUPH1T4	Modern Physics	s (Minor 2)	2	
23BUPH1P2	Physics Practica	als	60	2
Total			120	6
		Semester 1: Generic		
23BUPH1T5	Physics -I (Ge	neric-1)	30	2
	•	Total	30	2
	Optional Elect	tives Semester 1 -Interdisciplinary	Sciences	
23BUII	D1T6	Soft skills and personality development-I	30	2
		Total	30	2
	С	ourse Title Semester 1 - (AEC)		
23BUEN1T8		Basic English Learning course	30	2
	Semes	ster 1 - Indian Knowledge System		
23BUIK	(1T9	Indian Knowledge System	30	2
		Total	30	2

Semester 2: Major

Course Code	Course Title		No. of lectures In hrs	Credits
23BUPH2T1	Mathematical I	Mathematical Physics (Major 1)		2
23BUPH2T2	Electricity And	l Electronics (Major 2)	30	2
23BUPH2P1	Physics Practic	als	60	2
23BU2SEC7	SEC- OPAMP,	, Logic gates and Applications	45	2
	Та	otal	165	8
		Semester 2: Minor		
Course Code	Course Title		No. of lectures In hrs	Credits
23BUPH2T3	Mathematical I	Physics (Minor 1)	30	2
23BUPH2T4	Electricity And	Electronics (Minor 2)	30	2
23BUPH2P2	23BUPH2P2 Physics Practicals		60	2
	Total		120	6
	Semester	2: Generic		
23BUPH2T5	Physics -I (Ge	neric-2)	30	2
	Та	otal	30	2
	Optional elec	tives Semester 2-Interdisciplinary s	ciences	
23BUII	D2T6	Soft skills and personality development-II	30	2
		Total	30	2
	(Course Title Semester 2 (AEC)		
23BUE	N2T8	Scientific English writing	30	2
Total			30	2
	Sem	ester 2- Indian Knowledge System		
I 23BUIk	(2T9	Indian Knowledge System	30	2
		Total		2

Note: AEC, IKS, Open elective syllabus view separately.

Semester I

Course Cod	Classical Physics					
Course Out	Course Outcomes: Upon completion of this course, students will acquire knowledge about and able to					
• Unde	erstand Newton's laws and apply them in calculations of the motion of simpl	e systems.				
	erstand the concepts of friction and the concepts of elasticity, fluid mechanic be able to perform calculations using them.	S				
• Unde	erstand the concepts of lens system and interference.					
• Dem	onstrate quantitative problem-solving skills in all the topics covered					
Unit I:	Newton's Laws: Newton's first, second and third laws of motion, (Review) interpretation and applications, pseudo forces, Inertial and non-inertial frames of reference. Worked out examples (with friction present) Elasticity: Review of Elastic constants Y, K, η and σ ; Equivalence of shear strain to compression and extension strains. Relations between elastic constants, Couple for twist in cylinder. Fluid Dynamics: Equation of continuity, Bernoulli's equation, applications of Bernoulli's equation, streamline and turbulent flow, lines of flow in airfoil, Poiseuille'sequation.	15				
Unit II:	 Lens's formulae: Lens Maker's Formula (Review), Newton's lens equation, magnification-lateral, longitudinal, and angular. Equivalent focal length of two thin lenses, thick lens, cardinal points of thick lens, Ramsden, and Huygens eyepiece. Aberration: Spherical Aberration, Reduction of Spherical Aberration, Chromatic aberration, and condition for achromatic aberration. Interference: Interference in thin films, Fringes in Wedge shaped films, Newton's Rings (Reflective). Note: A good number of numerical examples are expected to be covered during the prescribed lectures. 	15				

23BUPH1T2	Major 2 Modern Physics	Credits 2	No. of lectures 30		
Course Outc	omes: Learner will				
• Understan	d nuclear properties and nuclear behavior.				
• Understan	d the isotopes and their applications.				
• Understan	d the quantum mechanical concepts.				
• Understan	d mechanism of Nuclear reactions				
• Develop o	uantitative problem-solving skills in all the topics covered.				
Unit I:	Structure of Nuclei : Basic properties of nuclei, Composition, Size, Rutherford'sexpt. for estimation of nuclear size, density of Mass defect and Binding energy, packing fraction, BE/A vs stability of nuclei (N Vs Z plot) and problems. Radioactivity : Radioactive disintegration concept of nature artificial radioactivity, Properties of α , β , γ -rays, laws of rad decay, half-life, mean life (derivation not required), u radioactivity, successive disintegration and equilibriums, radioi Numerical problems. Carbon dating and other application radioactive isotopes (Agricultural, Medical, Industrial, Archaeol information from net).	A plot, A plot, ral and lioactive nits of sotopes. lons of	15		
Unit II:	Interaction between particles and matter: Ionization chamber,15Proportional counter and GM counter problems15Nuclear Reactions: Types of Reactions and Conservation Laws. Concept of Compound and Direct Reaction, Q value equation and solution of the Q equation problems. Fusionand fission definitions and qualitative discussion with examples.15				
Course Code 23BUPH1P1	Major	Credits	No. of lectures		
Major	Practical	2	in hrs. 60		
	Practical Use of Vernier Calipers, Micrometer Screw Gauge	2	in hrs. 60		
Major		2	in hrs. 60		
Major Practical 1	Use of Vernier Calipers, Micrometer Screw Gauge				
Major Practical 1 Practical 2	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope				
Major Practical 1 Practical 2 Practical 3	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope Graph Plotting: Experimental, Straight Line with intercept, R				
Major Practical 1 Practical 2 Practical 3 Practical 4	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope Graph Plotting: Experimental, Straight Line with intercept, R Spectrometer: Schuster's Method				
Major Practical 1 Practical 2 Practical 3 Practical 4 Practical 5	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope Graph Plotting: Experimental, Straight Line with intercept, R Spectrometer: Schuster's Method Error Calculation: Absolute and relative errors calculation.	esonance C			
Major Practical 1 Practical 2 Practical 3 Practical 4 Practical 5 Practical 6	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope Graph Plotting: Experimental, Straight Line with intercept, R Spectrometer: Schuster's Method Error Calculation: Absolute and relative errors calculation. Use of DMM: AC DC Voltage, current and continuity.	esonance C			
Major Practical 1 Practical 2 Practical 3 Practical 4 Practical 5 Practical 6 Practical 7	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope Graph Plotting: Experimental, Straight Line with intercept, R Spectrometer: Schuster's Method Error Calculation: Absolute and relative errors calculation. Use of DMM: AC DC Voltage, current and continuity. Component Testing: Resistance, Capacitor, Diode, and Transport	esonance C			
Major Practical 1 Practical 2 Practical 3 Practical 4 Practical 5 Practical 6 Practical 7 Practical 8	Use of Vernier Calipers, Micrometer Screw Gauge Use of Travelling Microscope Graph Plotting: Experimental, Straight Line with intercept, R Spectrometer: Schuster's Method Error Calculation: Absolute and relative errors calculation. Use of DMM: AC DC Voltage, current and continuity. Component Testing: Resistance, Capacitor, Diode, and Transf Connecting Simple circuit: Voltage divider.	esonance C istor. of heat.	urve etc.		

Course Cod 23BUPH1T3	e Minor 1 Classical Physics 2	No. of lectures 30				
Course Out	Course Outcomes: Upon completion of this course, students will acquire knowledge about and able to					
• Unde	erstand Newton's laws and apply them in calculations of the motion of simple	e systems.				
	erstand the concepts of friction and the concepts of elasticity, fluid mechanics	5				
	be able to perform calculations using them.					
	erstand the concepts of lens system and interference.					
• Dem	onstrate quantitative problem-solving skills in all the topics covered					
Unit I:	Newton's Laws: Newton's first, second and third laws of motion, (Review) interpretation and applications, pseudo forces, Inertial and non-inertial frames of reference. Worked out examples (with friction present) Elasticity: Review of Elastic constants Y, K, η and σ ; Equivalence of shear strain to compression and extension strains. Relations between elastic constants, Couple for twist in cylinder. Fluid Dynamics: Equation of continuity, Bernoulli's equation, applications of Bernoulli's equation, streamline and turbulent flow, lines of flow in airfoil, Poiseuille'sequation.	15				
Unit II:	 Lens's formulae: Lens Maker's Formula (Review), Newton's lens equation, magnification-lateral, longitudinal, and angular. Equivalent focal length of two thin lenses, thick lens, cardinal points of thick lens, Ramsden, and Huygens eyepiece. Aberration: Spherical Aberration, Reduction of Spherical Aberration, Chromatic aberration, and condition for achromatic aberration. Interference: Interference in thin films, Fringes in Wedge shaped films, Newton's Rings (Reflective). Note: A good number of numerical examples are expected to be covered during the prescribed lectures. 	15				

Course Coo 23BUPH1T		ts No. of lectures 30
Course Ou	tcomes: Learner will	
• Underst	and nuclear properties and nuclear behavior.	
• Underst	and the isotopes and their applications.	
• Underst	and the quantum mechanical concepts.	
• Underst	and mechanism of Nuclear reactions	
Develop	quantitative problem-solving skills in all the topics covered.	
Unit I:	Structure of Nuclei : Basic properties of nuclei, Composition, Charge Size, Rutherford'sexpt. for estimation of nuclear size, density of nucleus Mass defect and Binding energy, packing fraction, BE/A vs A plot stability of nuclei (N Vs Z plot) and problems. Radioactivity : Radioactive disintegration concept of natural an artificial radioactivity, Properties of α , β , γ -rays, laws of radioactiv decay, half-life, mean life (derivation not required), units or radioactivity, successive disintegration and equilibriums, radioisotopes Numerical problems. Carbon dating and other applications or radioactive isotopes (Agricultural, Medical, Industrial, Archaeological information from net).	s, t, d e 15 of s. of
Unit II:	 Interaction between particles and matter: Ionization chamber, Proportional counter and GM counter problems Nuclear Reactions: Types of Reactions and Conservation Laws. Conce of Compound and Direct Reaction, Q value equation and solution of the Q equation problems. Fusionand fission definitions and qualitative discussion with examples. 	-

References:

Course Co				Course Title		
	BUPH1T1 / Classical Physics					
Sr. No.	Title		Authors	Publisher	Edition	Year
1.	Funda	mentals of	Haliday,	John Wiley	6 th	2005
	Physic	cs (extended)	Resnick and	and Sons		
			Walker			
2.	Conce	epts of Physics	H. C. Verma	Bharati	1 st	2015
	(Part l	[)		Bhavan		
3.	A Tex	tbook of	Brijlal	S. Chand	25th	2012
	Optics	5	Subramanyam			
			and			
			Avadhanulu			
4.	Funda	mentals of	Jenkins and	McGraw Hill	4th	1981
	Optics	5	White	International		

5.	Classical Dynamics	Thornton and	Thomson	5th	2004
		Marion			
6.	Optics	C L Arora	S. Chand	1 st	2001

Course C 23BUPH 23BUPH	11T2 / Modern Physics				
Sr. No.	Title	Authors	Publisher	Edition	Year
1.	Nuclear Physics	Irving Kaplan	Narosa Publishing House	2nd	1987
2.	Nuclear Physics	Dr. S. B. Patel	New Age International	2nd	2011
3.	Atomic and Nuc. Physics	lear N. Subrahmanya m, Brijlal and Seshan	S. Chand	2nd	2012
4.	Perspectives of Modern Physics	Arther Beiser	Tata McGraw Hill2nd	1st	1988
5.	Atomic Physics	S. N. Ghoshal	S. Chand	1 st	2003
6.	Nuclear Physics	S. N. Ghoshal	S. Chand	2nd	2014

Course Code 23BUPH1P2	Minor Practical	Credits 2	No. of lectures in hrs. 60		
Practical 1	Use of Vernier Calipers, Micrometer Screw Gauge				
Practical 2	Use of Travelling Microscope				
Practical 3	Graph Plotting: Experimental, Straight Line with intercept, Resonance Curve etc.				
Practical 4	Spectrometer: Schuster's Method				
Practical 5	Error Calculation: Absolute and relative errors calculation.				
Practical 6	Use of DMM: AC DC Voltage, current and continuity.				
Practical 7	Component Testing: Resistance, Capacitor, Diode, and Transistor.				
Practical 8	Connecting Simple circuit: Voltage divider.				
Practical 9	J by Electrical Method: To determine mechanical equivalent of heat.				
Practical 10	Bifilar Pendulum: To determine the moment of Inertia of a R	ectangular V	Wooden bar.		

Practical 11	Bifilar Pendulum: To determine the moment of Inertia of a Spherical Wooden bar.
Practical 12	Spectrometer: To determine of angle of Prism.
Practical 13	Spectrometer: To determine refractive index of Prism.
Practical 14	Flat spiral Spring: To determine Y Young's Modulus of a wire material by method of vibrations.
Practical 15	Surface Tension: To determine the surface tension of water by capillary rise method.
Practical 16	Combination of Lenses: To determine equivalent focal length of a lens system by magnification method.
Practical 17	Thermistor characteristic: To study Electrical characteristic of Thermistor.
Practical 18	Thermistor characteristic: To study thermal characteristic of Thermistor.
Practical 19	Newton's Rings: To determine radius of curvature of a given convex lens using Newton's rings.
Practical 20	Torsional Oscillation: To determine modulus of rigidity η of a material of wire by torsional oscillations

Semester II

Course Code	Mathematical Physics		No. of lectures 30		
UndeDemoArtic	 Demonstrate quantitative problem-solving skills in all the topics covered. Articulate the principles of object-oriented mathematical problem solving. 				
Unit I:	Differential equations: Introduction, Ordinary differential ec First order homogeneous and non- homogeneous equations with coefficients, Exact differentials, General first order Linear Dif Equation, Second-order homogeneous equations with coefficients. Simple Harmonic motion (spring mass system). Transient response of circuits : Series LR, CR, LCR circuits. and decay of currents/charge.	variable fferential constant	15		
Unit II:	 Superposition of Collinear Harmonic oscillations: Linear Superposition Principle. Superposition of two collinear oscillations (1) equal frequencies and (2) different frequencies (Beats). Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal unequal frequency and their uses Wave Motion: Transverse waves on string, Travelling and waves on a string. Normal modes of a string, Group velocity velocity, Plane waves, Spherical waves, Wave intensity. Note: A good number of numerical examples are expected to be during the prescribed lectures. 	cillations illations: an standing y, Phase	15		

Course Cod 23BUPH21	- Credits	No. of lecture s 30		
Course Ou • Und • Und • Solv • Und				
Unit I:	Alternating current theory: [(Concept of L, R, and C:AC circuit containing pure R, pure L and pure C (Review)], representation of sinusoids by complex numbers, Series L-R, C-R and LCR circuits. Resonance in LCR circuit (both series and parallel), Power in ac circuit. Q-factor.15AC bridges: AC-bridges: General AC bridge. Maxwell, de-Sauty15			
Unit II:	AC bridges: AC-bridges: General AC bridge, Maxwell, de-SautyCircuit theorems: (Review: ohm's law, Kirchhoff's laws, Thevenin's Theorem, Norton's Theorem), Superposition Theorem, Ideal Current Sources, Reciprocity Theorem, Maximum Power Transfer Theorem. Numerical related to circuit analysis using the above theorems.Zener Diodes: (Review: Zener forward and reverse characteristics), Zener diode as voltage stabilizer Avalanche breakdown Zener14			

Course Code 23BUPH2P1	Major				
2500111211	-	Credits 2	No. of lectures in		
	Practical	Creans 2	hrs. 60		
Practical 2	To study load regulation of a Bridge Rectifier: To study bridge	dge rectifier w	vithout capacitor		
Practical 3	filter. To study load regulation of a Bridge Rectifier: To study bridge	dge rectifier w	vith capacitor		
	filter.	0	•		
Practical 1	Flywheel: To determine the moment of inertia and to determ torque graphically.	ine frictional			
Practical 4	LR Circuit: To determine the value of given inductance.				
Practical 5	To study simple AND, OR and NOT gates				
Practical 6	To study NAND gate as Universal Building Block: Design OR and NOT gate using NAND gate.	and testing o	of AND,		
Practical 7	To study NOR gate as Universal Building Block: Design and testing of AND, OR and NOT gate using NOR gate.				
Practical 8	To verify De Morgan's Theorems: Design and testing of De Mor	gan's 1 st Theo	rem.		
Practical 9	To verify De Morgan's Theorems: Design and testing of De Morgan's 2 nd Theorem.				
Practical 10	Thevenin's Theorem: To verify Thevenin's theorem for DC circuits experimentally and				
	graphically.				
Practical 11	Norton's Theorem: To verify Norton's theorem for DC circuits experimentally and graphically.				
Practical 12	LDR Characteristics: To study the dependence of LDR resistance on intensity of light.				
Practical 13	CR Circuit: To determine value of given capacitor.				
Practical 14	To study EX-OR Gate: Design half adder verify the truth table.				
Practical 15	To study EX-OR Gate: Design full adder and verify the truth table.				
Practical 16	LCR series Resonance: To determine resonance frequency of LCR series circuit.				
Practical 17	LCR parallel Resonance: To determine resonance frequency of LCR parallel circuit.				
Practical 18	Frequency of AC Mains: To determine frequency of AC mains				
Practical 19	Laser beam divergence: To study the divergence of Laser beam				
Practical 20	p-n junction diode: To study the characteristics of simple p-n junction diode				
Practical 21	Zener diode: To study the characteristics of simple zener diode				

Course Coo 23BUPH2T	Mathematical Physics	edits No. of lectures 30			
 Course Outcomes: Upon completion of this course, students will acquire knowledge about Understand the basic mathematical concepts and applications of them in physical s Demonstrate quantitative problem-solving skills in all the topics covered. Articulate the principles of object-oriented mathematical problem solving. Able to formulate a problem associated with physical world. 					
Unit I:	Differential equations: Introduction, Ordinary differential equations, First order homogeneous and non- homogeneous equations with variable coefficients, Exact differentials, General first order Linear Differential Equation, Second-order homogeneous equations with constant coefficients. Simple Harmonic motion (spring mass system).15Transient response of circuits: Series LR, CR, LCR circuits. Growth and decay of currents/charge16				
Unit II:Superposition of Collinear Harmonic oscillations: Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses15Wave Motion: Transverse waves on string, Travelling and standing waves on a string. Normal modes of a string, Group velocity, Phase velocity, Plane waves, Spherical waves, Wave intensity. Note: A good number of numerical examples are expected to be covered during the prescribed lectures.15					

Course Cod 23BUPH2T		Credits 2	No. of lectur es 30			
UnderUnderSolv	 Understand and apply the theorems to solve complicated linear circuits. Solve the logic equations using logic circuits. 					
Unit I:	Resonance in LCR circuit (both series and parallel), Power in ac circuit. Q-factor.					
Q-factor. AC bridges: AC-bridges: General AC bridge, Maxwell, de-Sauty Circuit theorems: (Review: ohm's law, Kirchhoff's laws, Thevenin's Theorem, Norton's Theorem), Superposition Theorem, Ideal Current Sources, Reciprocity Theorem, Maximum Power Transfer Theorem. Numerical related to circuit analysis using the above theorems. Zener Diodes: (Review: Zener forward and reverse characteristics), Zener diode as voltage stabilizer, Avalanche breakdown, Zener breakdown, Temperature coefficient of Zener. Digital electronics: Logic gates (Review), NAND and NOR as universalbuilding blocks. EXOR gate: logic expression, logic symbol, truth table, Implementation using basic gates and its applications, Boolean algebra, Boolean theorems. De-Morgan theorems, Half adder and Full adder.						

References:

Course 23BU	e Code PH2T1 / 23BUPH2T3	Course Title Mathematical Physics			
Sr. No.	Title	Authors	Publisher	Edition	Year
1.	Mechanics and Electrodynamics	Brijlal, N. Subramanyam, Jivan Seshan	S. Chand	₃ rd	2005
2.	Mathematical Physics	A. K. Ghatak, Chua	Macmillan India Ltd	1st	1995
3.	Mathematical Methods for Physics and Engineering	Ken Riley, Michael Hobson and Stephan Bence	Cambridge (Indian edition)	₂ nd	1983
4.	Mathematical Physics	H. K. Dass	S. Chand & Co.	₇ th	1999
5.	Mathematical Methods of Physics	Jon Mathews & R. L. Walker	W. A. Benjamin Inc	₂ nd	1969

Course Code 23BUPH2T2 / 23BUPH2T4		Elec	Course Title Electricity and Electronics			
Sr. No.	Title		Authors	Publisher	Edition	Year
1.	Electricity and Magnetism		D. Chattopadhya y, P. C. Rakshit	New Central Book agency	8th	2009
2.	A Textbook of Electrical Technology Vol. I		B. L. Theraja and A. K. Theraja	S. Chand	22nd	2004
3.	Electronics devices and Circuit Theory		Boylestad and Nashelsky	Prentice Hall of India (EEE)	10th	2009
4.	Electronics Principles		V. K. Mehta and R. Mehta	S. Chand	11th	2012
5.	Introduction to Electrodynamics		David J. Griffiths	Prentice Hall of India (EEE)	3rd	2002
6.	Digital Principles and Applications		A. P. Malvino	Tata McGraw Hill	4th	1992

Course Code 23BUPH2P2	Minor Practical	Credits 2	No. of lectures in hrs. 60
Practical 2	To study load regulation of a Bridge Rectifier: To study be capacitor filter.	ridge rectifier	without
Practical 3	To study load regulation of a Bridge Rectifier: To study be filter.	-	-
Practical 1	Flywheel: To determine the moment of inertia and to determ torque graphically.	ine frictional	
Practical 4	LR Circuit: To determine the value of given inductance.		
Practical 5	To study simple AND, OR and NOT gates		
Practical 6	To study NAND gate as Universal Building Block: Design OR and NOT gate using NAND gate.	and testing of	of AND,
Practical 7	To study NOR gate as Universal Building Block: Design a and NOT gate using NOR gate.	-	
Practical 8	To verify De Morgan's Theorems: Design and testing of D	e Morgan's 1	st Theorem.
Practical 9	To verify De Morgan's Theorems: Design and testing of D	e Morgan's 2	nd Theorem.
Practical 10	Thevenin's Theorem: To verify Thevenin's theorem for DC circuits experimentally and graphically.		
Practical 11	Norton's Theorem: To verify Norton's theorem for DC circuits experimentally and graphically.		
Practical 12	LDR Characteristics: To study the dependence of LDR resi	stance on inte	ensity of light.
Practical 13	CR Circuit: To determine value of given capacitor.		
Practical 14	To study EX-OR Gate: Design half adder verify the truth ta	ble.	
Practical 15	To study EX-OR Gate: Design full adder and verify the truth table.		
Practical 16	LCR series Resonance: To determine resonance frequency		
Practical 17	LCR parallel Resonance: To determine resonance frequen	cy of LCR pa	rallel circuit.
Practical 18	Frequency of AC Mains: To determine frequency of AC mains		
Practical 19	Laser beam divergence: To study the divergence of Laser beam		
Practical 20	p-n junction diode: To study the characteristics of simple p-	n junction di	ode
Practical 21	Zener diode: To study the characteristics of simple zener dio	ode	

Evaluation Scheme

Internal Test	Project (Attending Seminars/Conference/workshop/any other and writing report on it)	Attendance & Leadership qualities	Total
10	05	05	20

Internals Examination: (Continuation Internal Assessment for each course/paper)

> Internal Examination: **Duration: 1 Hour**

Total Marks: 10

	Answer the following	10
Q.1	Objective	05
Q. 2	Subjective	05

> Theory Examination:

Suggested Format of Question paper

Duration: $1\frac{1}{2}$ Hour Total Marks: 30 (each paper 30 marks)

• All questions are compulsory

• 11	• An questions are compulsiony			
Q.1	Answe	r any two of the following	10	
	а	Based on Unit I		
	b	Based on Unit I		
	c	Based on Unit I		
	d	Based on Unit I		
Q. 2	Answe	r any two of the following	10	
	а	Based on Unit II		
	b	Based on Unit II		
	с	Based on Unit II		
	d	Based on Unit II		
		•		
Q. 3			10	
	Α	Fill in the blanks . (Any Six)	6	
	1			
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
1	10			

11		
12		
В	Answer in one sentence (Any Four)	4
1		
2		
3		
4		
5		
6		
7		
8		

[Generic]

Preamble

The systematic and planned curricula from these courses shall motivate and encourage learners to understand basic concepts of Physics. It will help the student to

- To develop analytical abilities toward real-world problems.
- To familiarize with current and recent scientific and technological developments
- To enrich knowledge through problem-solving hands on activities, study visits.
- To understand the links of Physics to other disciplines.
- To develop scientific temperament.
- To obtain solutions to scientific questions using qualitative and quantitative reasoning and experimental investigation.

The syllabus is aimed to achieve certain objectives. The One-year syllabus covers fundamental concepts in Physics and gives glimpses of the scenario at the frontier. The students will be ready for the higher educational opportunities and jobs available in different fields of Physics and related environments.

Eligibility: Level 4.0 –	HSc
Duration	1 Year (Includes SEM I and SEM II)
Mode of Conduct	Offline lectures / Online lectures
Total Credits for the Program	4
Starting year of implementation:	2023-24
Name of the Program:	Generic Physics
Discipline/Subject	PHYSICS

Semester I

	se Code JPH1T5		Course Title Physics I Generic		Credit 02	No. of lectures 30
•	Understand applications Demonstrat Articulate th Able to form Demonstrat	the basic Quasions of them in p e quantitative he principles nulate a prob e quantitative	nt will be able to— antum & X-rays, Electro hysical situations. problem-solving skills of object-oriented mathe lem associated with phys problem-solving skills a are based on 12 th Stand	in all the topics matical problem sical world in all the topics	covered. n solving.	to appear
Unit I :	Life History of Dr. Homi Bhaba Origin of Quantum theory: Black body (definition), Black Body spectrum, Wien's displacement law (Review), Matter waves, wave particle duality, Heisenberg's uncertainty Principle. Davisson - Germer experiment, G. P. Thompson experiment. X-Rays: X-Rays production and properties. Continuous and characteristic					
Unit II :	Electric field and potential, Electric charge, Kinds of charges.Unit of charge, Coulomb's law, Electric field, Electric field due to a point charge, Lines of electric force, Electric potential energy, Electric potential, Electric potential due to a point charge. Introduction, Definition of magnetic field, Relation between electric and magnetic field, Motion of a charge particle in a uniform magnetic field, Magnetic force on a current carrying wire, Biot- Savart law, Magnetic field due to a current in a straight wire, Force between parallel currents, Magnetic field due to a circular current.					
Books and References:						
Sr. No.	Ti	itle	Author/s	Publisher	Editio n	Year
1	Electricity a	and agnetism	D.Chattopadhyay, PC Rakshit	New Central Book agency	8th	2009

2	A Textbook of Electrical Technology Vol. I	B.L. Theraja and A.K. Theraja	S. Chand	22nd	2004
3	Electronic devices and CircuitTheory	Boylestad and Nashelsky	Prentice Hall of India	10th	2009
4	Electronics Principals	V K Mehta and R Mehta	S Chand	11th	2012
5	Introduction to Electrodynamics	David J. Griffiths	Prentice Hall India (EEE)	3rd	2002
6	Digital Principles and Applications	A P Malvino	Tata McGraw Hill	4th	1992
7	Fundamental of Physics (extended)	Halliday, Resnick and Walker	John Wiley and Sons	бth	2005
8	Concepts of Physics (Part I)	H. C. Verma	Bharati Bhavan	1ST	2015

Semester II

Course Code 23BUPH2T5		Course Title Physics-II Generic	Credits 2	No. of lectures 30
On completion of the course, student will be able to— • Understand the basic thermodynamics, mathematical concepts and applications of them in phy situations. • Demonstrate quantitative problem-solving skills in all the topics covered. • Articulate the principles of object-oriented mathematical problem solving. • Able to formulate a problem associated with physical world • Demonstrate quantitative problem-solving skills in all the topics covered so as to appear component of the based on 12 th Standard. Unit-1 Unit-1				
Unit-2	Refrigera Review: Rectang Problem Commut Gradien significa Divergen Curl. Lin The Fun included	gine and its efficiency. Working of tor, Air Conditioner. Vectors, Scalars, Vector algebra, Laws of Vector algebra, U ular unit vectors, Components of a vector, Scalar fields, Vector s based on Vector algebra. Dot or Scalar product, Cross or Vector ative and Distributive Laws, Scalar Triple product, Vector Triple t , divergence and curl : The ∇ operator, Definitions and nce of Gradient, Divergence and Curl; Distributive Laws for nce and Curl (Omit proofs); Problems based on Gradient, Diver ne, Surface and Volume Integrals, The Fundamental Theorem of damental Theorem of Gradient, The Fundamental Theorem of D damental Theorem of Curl (Statement and Geometrical interp , Proof of these theorems are required to be done.	ctor fields, or product, e product d physical Gradient, rgence and f Calculus, vivergence,	15

Books and References:							
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Thermal Physics	A.B.Gupta	Reprint		2008		
2.	Mathematical Physics	A K Ghatak, Chua	Macmillan India Ltd	1 st	1995		
3.	Mathematical Methods for Physics and Engineering	Ken Riley, Michael Hobson and Stephen Bence	Cambridge (Indian edition)	Reprinted	1983		
4.	Mathematical Physics	H. K. Dass	S. Chand &Co	7th	1999		
5.	Mathematical Methods of Physics	Jon Mathews & R. L. Walker	W A Benjamin Inc	2nd	1969		

ration: 1			Total Marks: 20
0.1	Ans	wer the following	20
Q.1			
Q.2			
Theory			
		t of Question paper	
iration:			Total Marks
		ns are compulsory	
Q.1		er any two of the following	10
	a	Based on Unit I	
	b	Based on Unit I	
	c	Based on Unit I	
	d	Based on Unit I	
Q. 2	Answ	er any two of the following	10
	a	Based on Unit II	
	b	Based on Unit II	
	с	Based on Unit II	
	d	Based on Unit II	
Q. 3			10
	A	Fill in the blanks . (Any Six)	6
	1		
	2		
	3		
	4		
	5		
	6 7		
	8		
	9		
	10		
	11		
	12		
	B	Answer in one sentence (Any Four)	4
	1		
	2		
	3		
	5		
	6		
	7		
	8	+	

{Skill Enhancement Course (SEC)}

PROGRAM OUTLINE

Course Title & Code	Credits	Credit distribution of the course		Pre- requisite	
		Lectures	Tutorial	Practical/Practice	
23BU1SEC7 Physics- Measuring skill	2	1	0	1	NIL
23BU2SEC7 OPAMP, Logic gates and Applications	2	1	0	1	NIL

PROGRAMME SPECIFIC OUTCOME (PSOs)

- The purpose of this course is to provide students hands-on exposure to a variety of mechanical and electrical tools.
- To understand and utilize the fundamental ideas about measurements in different other aspects of Science.
- Able to learn Designing of Basic and universal gates using RTL and DTL and applications of OPAMP.

SEMESTER - I

Course Code	Theory Physics Measuring skill	Credits 01	No. of lectures in hrs. 15		
23BU1SEC7	physics measuring skill Practicals	Credits 01	No. of lectures in hrs. 30		
	Total	02	45		
23BU1SEC7	Theory Physics Measuring skill	Credits 01	No. of lectures in hrs. 15		
 Learning Outcomes: ➢ On successful completion of this course the students will be able to: ➢ Perform any issue-related tasks about the Vernier caliper Screw gauge Microscope and Spectrometer. ➢ To test diode, Transistor and IC's ➢ To learn and understand the Mechanical and Electrical measurements. 					
UNIT- I	 Introduction Measuring units. Conversion to SI and CGS Familiarization scale, Vernier caliper and it's least count S and their utility, Microscope and Spectrometer. Measure the dimensions of a Volume of cylindrical beaker or glass, Diam wire, Thickness of metal sheet extra. Electrical and electronic skill. Use of voltmeter, Use of current met multimeter, Testing of resistors capacitors transistor using multimeter, Introduction 741.IC 555 and their application, Soldering circuits having discrete components (R,C, and ICs on PCB and Operation of CRO and its sector of the sector	15			
References	 A test book in electrical technology I S Chand and company. Measurements in Physics: Funda Derived Quantities by Daniel Okol Onah, Ambrose Eze, Joseph Ugwu Obetta ISBN-10: 1533697493 ISBN 1533697493 				

Course Code 23BU1SEC7	Course Title Physics measuring skill Practicals	Credits 1	No. of lectures 30
--------------------------	---	--------------	--------------------------

Learning Outcomes

- > On successful completion of this course the students will be able to:
- > To minimize any measurement uncertainty by ensuring the accuracy of test equipment
- > To enhance practical knowledge, skills and techniques in order to improve proficiency while applying for practical purpose.

UNIT- II	1	Use of Vernier Callipers
	2	Use of Micrometer screw gauge
	3	Use of Travelling Microscope
	4	Resistance of Voltmeter
	5	Use of Spectrometer.
	6	Use of multimeter
	7	Frequency and amplitude measurement using CRO
	8	Forward and reverse characteristics of diode
	9	I/P Characteristics of NPN transistor
	10	O/P Characteristics of NPN transistor
	11	Transistor as a switch

Semester- II

Course Code 23BU2SI	:	OPA	Theory OPAMP, Logic gates and Applications MP, Logic gates and Applications Practicals	Credits 01 Credits 01	No. of lectures in hrs. 15 No. of lectures in hrs. 30		
			Total 02				
23BU2SEC	7	OPAMP	Theory , Logic gates and Applications	Credits 01	No. of lectures 15		
			n completion of this course, students	will acquire kn	owledge about		
			r mathematical applications.	and DTI			
 ▶ Learn Designing of Basic and universal gates using RTL and DTL. Integrated circuit Op-Amp IC 741,Pin Diagram, Working of IC Specifications of IC 741 Op-Amp, Op-Amp Characteristics and mathematical Applications, IC 741 is used in Amplifier. Basic Logic gates, Universal logic gates . 							
	nps an		ntegrated Circuits by Ramakant A. G ers by Vimal Mehta	ayakwad			
			Course Title		No. of		
Practical		OPAM Practica	P, Logic gates and Application als	S- Credits	01 lectures 30		
≻ To u	ul com se OPA	pletion of AMP for N	this course the students will be able Mathematical operation. g RTL and DTL Techniques.	to:			
	1		Inverting DC amplifier				
	2		Inverting AC Amplifier				
	3		Non Inverting DC amplifier				
	4		Non- AC Inverting amplifier				
	5		Op-Amp as Voltage Follower				
UNIT II 6			Op-Amp as Adder				
	7		Op-Amp as Subtractor				
	8		Op-Amp as Comparator				
	9		Op-Amp as first order LPF				
	10		Op-Amp as first order HPF				

11	To verify the truth table of basic gate (NOT, AND, OR)
12	To verify the truth table of universal gates (NAND and NOR).
13	To verify the truth table of basic gate (NOT, AND, OR) using RTL (using Resistor Transistor Logic)/ DTL (Diode Transistor Logic) circuits.
14	To verify the truth table of universal gates (NAND and NOR). using RTL (using Resistor Transistor Logic)/ DTL (Diode Transistor Logic) circuits.

Evaluation Scheme

Examination scheme and mode:

Total Marks: 50

Theory Assessment: 25 Marks

Exam (Practical): 25 Marks

**The Internal Assessment for the course may include Class participation, Assignments, Class tests, Projects, Field Work, Presentations, amongst others as decided by the faculty.

~ * ~ * ~ * ~ * ~ * ~